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1. Introduction

Measuring the motional state of an atomic cloud generally 
requires the irradiation of a light beam and the detection of the 
velocity-dependent response of the cloud in the scattered light. 
Frequently used techniques either map the atomic distribution 
after a free expansion time, or measure the Doppler shift of the 
scattered light. However, the incident light also exerts optical 
forces which, in the case of ultracold atoms, can dramatically 
alter the atomic velocity and falsify its measurement. A way 
to control the optical forces consists in making the light scat-
tering process coherent, e.g. by forcing the scattered light into 
a single predefined light mode. The mechanical impact of the 
incident light then becomes predictable and can be taken into 
account, while heating can be avoided. Techniques based on 
this idea that have been successfully used in the past are the 
spectroscopy of recoil-induced resonances (RIR) [1, 2] or the 
collective atomic recoil laser (CARL) [3, 4]. Both techniques 
allow to deduce the atomic velocity comparing the Doppler-
shifted frequency of a single scattered light mode with the one 
of the incident light. In the case of CARL, the incident and the 
scattered light modes are the counterpropagating modes of a 
unidirectionally pumped ring cavity. Theoretical models and 
experiments have shown that the backaction of the atoms onto 

the light fields due to the CARL mechanism not only accel-
erates the atoms in a predictable way, but also provides an 
accurate and continuous monitor for the instantaneous atomic 
velocity [5, 6].

A particularly interesting application of techniques allow-
ing continuous monitoring of the atomic velocity is the obser-
vation of Bloch oscillations of ultracold atoms stored in a 
one-dimensional optical lattice and subject to a constant exter-
nal force, for instance, gravity [7]. Since the Bloch oscillation 
frequency is directly proportional to the force, the observa-
tion of Bloch oscillations has become a fundamental tool for 
high precision gravity measurements [8, 9]. Recent propos-
als promise a continuous monitoring of the Bloch oscillation 
dynamics in a symmetrically pumped optical ring cavity in a 
way to minimize atomic backaction onto the amplitude and 
phase of the light fields leaking out of the cavity [10, 11].

In this letter, we analyze the CARL dynamics of ultracold 
atoms placed in a unidirectionally laser-pumped ring cavity 
in the presence of an externally imposed 1D optical lattice 
aligned along the cavity axis. In addition, a constant force 
accelerating the atoms along the same axis is added to the 
system (see figure  1). While the force incites the atoms to 
undergo Bloch oscillations in the imposed lattice, the CARL 
mechanism coherently scatters the pump light into the reverse 
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mode in a self-amplified way accompanied by an atomic 
redistribution into a self-determined 1D optical lattice, which 
competes with the externally imposed one.

When the cooperative coupling is stronger than the opti-
cal lattice strength, the CARL mechanism dominates over 
the Bloch oscillation dynamics and the population transfer 
between adjacent momentum states no longer occurs at the 
Bloch period, but depends on the CARL characteristic time. 
Unlike the resonance crossings in the adiabatic rapid pas-
sage (ARP) regime [12], the mechanism responsible for the 
momentum transition in this case is the scattering by the self-
generated density grating.

Even though the CARL effect may strongly modify the 
Bloch oscillation frequency, for moderate cooperative cou-
pling strength, we find a parameter range where the CARL 
and Bloch dynamics cooperate and synchronize giving rise 
to regular and stable Bloch oscillations. This is achieved 
through a cavity-mediated mode-locking mechanism between 
adjacent momentum modes. We find that the mode-locking is 
steady against technical noise, accidental excitations of atoms 
to higher bands, and dephasing due to interatomic interac-
tion [13]. We investigate the transient regime between the two 
dynamics and derive the conditions under which pure Bloch 
oscillations can be observed.

In the following, we derive a model describing the inter-
play between CARL and Bloch oscillations and illustrate the 
mode-locking effect with numerical simulations.

2. Model

We consider a cloud of ultracold atoms confined in an opti-
cal standing wave with the lattice constant π/kl. This stand-
ing wave can, for instance, be generated by two laser beams 
sufficiently far blue-detuned from an atomic resonance and 
intersecting at the location of the atoms under an angle β given 
by β =K ksin ( / 2) l, where K is the wavenumber of the laser 
beams, as shown in figure 1. If the potential depth is denoted 
by ℏ W0, the imposed potential reads as ℏW k x( / 2 )sin (2 )l0

. Being additionally exposed to the force potential max, with 
the atomic mass m and the acceleration a, the atoms execute 
Bloch oscillations with frequency νb = ma/2ℏ kl.

We now add an optical ring cavity, letting the atoms simulta-
neously interact with its two counterpropagating cavity modes 
with wavenumber k0. The atomic motion in such an environment 
has been experimentally shown [2, 6, 14] to act back onto the 
intracavity light fields and imprint into their phases and ampli-
tudes detectable signatures. In certain parameter regimes this 
backaction, known as CARL [3], develops self-synchronized 
atomic trajectories in conjunction with the spontaneous forma-
tion of a standing wave optical potential. It is thus reasonable to 
expect observable signatures of atomic Bloch oscillations when 
the externally imposed standing wave is commensurate with the 
standing wave formed by the ring cavity, i.e. k0 = kl.

With d being the electric dipole moment of the atomic tran-
sition and E1 the electric field generated by a single photon in 
a cavity mode, the atom-field coupling strength is Ω1 = dE1/ℏ. 
The Rabi frequency generated by the pump light is Ωp, and 

Δ is its detuning from the atomic resonance. Thus, we can 
express the atom-mediated pump-probe coupling strength as 
U0 = Ω1Ωp/4Δ. Labeling the probe mode as α, where ∣α∣2 is 
the photon number, the interference between pump and probe 
modes generates a dipolar potential with the depth ℏα∣U0∣ 
along the optical axis of the ring cavity. Starting from the 
basic equations  describing the model [15] and disregarding 
atomic interaction in sufficiently dilute atomic clouds, we can 
write the equations of motion for the probe mode α and the 
atomic wave function ψ in the following form:

 

ψ ψ α α ψ

ψ ψ

ℏ∂
∂

= − ℏ ∂
∂

− ℏ −

− + ℏ

−
t m x

U

max
W

k x

i
2

i ( e *e )

2
sin (2 ) ,

k x k x
2 2

2 0
2i 2i

0
0

0 0

(1)

 ∫α ψ δ κ α= ∣ ∣ + −−
t

NU k x
d

d
e d(2 ) (i ) ,k x

0
2 2i

0
0 (2)

where N is the number of atoms, κ is the cavity decay width, 
and δ = ω0 − ωs is the pump-probe detuning. For W0 = 0 and 
a = 0, the equations describe the usual CARL dynamics [15].

The evolution of the system can be conveniently described 
in the accelerated frame moving with a momentum mat along 
the positive direction of the x-axis. In this frame, the wave 
function is transformed according to ψ ψ= ℏ∼ max texp (i / ). 
Substituting α α α= −∼

0 with α0 = W0/4U0 into equations (1) 
and (2), we obtain:
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Figure 1. Scheme of a ring cavity consisting of two high-reflecting 
mirrors (HR) and one output coupler (OC) interacting with a 
Bose–Einstein condensate (BEC) stored in one arm of the ring cavity. 
Only one cavity mode is pumped (Ωp, k), the counterpropagating 
probe mode (α) is populated by backscattering from the atoms. Two 
lasers (K1,2) crossing the cavity mode at the location of the BEC 
under angles ± β/2 generate an optical lattice whose periodicity is 
commensurate with the standing wave created by the pump and probe 
modes. The atoms are subject to an external accelerating force F.
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This shows that the impact of the externally imposed standing 
wave can be simply accounted for as an additional laser beam 
pumping the probe mode at the rate α0κ.

The size of the atomic cloud is assumed to be much longer 
than the radiation wavelength and its density is uniform. Thus 
we can expand the atomic wave function into plane waves 

with periodicity π/k0, i.e. ∑ψ
π

=∼ x C t( )
1

2
( )e

n
n

nk x2i 0 , where 

∣Cn∣2 is the probability of finding the atoms in the nth momen-
tum state. Note that the wavefunction is expanded in the 
momentum states ∣2ℏ k0· n〉 [12] rather than the extensively 
used Bloch states ∣nb, q〉 with the quasi-momentum q and the 
band index nb [16]. Using the above definition of the Bloch 
oscillation frequency and introducing the single-photon recoil 
frequency ω = ℏk m/ 2r 0

2 , we obtain:

 ω ν α α= − + + * −∼ ∼
+ −n t C U C C4i ( ) ( ),C

t r b n n n
d

d
2

0 1 1
n (5)
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d
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n
n n0 1 0 (6)

We now assume the cavity decay to be much faster than the 
Bloch or CARL dynamics, such that κα α≫∼ ∼ td / d , and the 
detuning to be small on the scale of the cavity linewidth, i.e. 
δ ≪ κ. In this regime, the cavity can be adiabatically elimi-
nated, resulting in a light field which is slaved to the collective 
atomic motion:

 ∑α α
κ

≈ + *∼
−

NU
C C .

n
n n0

0
1 (7)

The last term in equation (7) represents the backaction of the 
atoms onto the cavity field. The type of dynamics described 
by equations  (5) and (7) depends critically on the coopera-
tive coupling of the atoms to the cavity fields, which can be 
controlled via the number of atoms N. For NU0/κ ≪ α0, the 

cooperative coupling is very weak, so that the atomic backac-
tion onto the cavity fields may be disregarded. The cavity field 
decouples from the atoms and quickly evolves into a steady 
state given by α α= =∼U U W / 40 0 0 0 . In this case, we recover 
the usual Bloch oscillation picture, where the motion of the 
atoms is governed by equation (5) and can be interpreted as 
follows [12]: In the frame accelerated by the external force, 
the frequencies of the two counterpropagating light fields are 
Doppler-shifted, and the effect of the external force manifests 
itself as a linear chirp in the first term on the right-hand side 
of the equation. As time goes on, a resonance is crossed at 
t = − nτb, where τb = 1/νb is the Bloch period, and the cross-
ing is periodically repeated for every = − − …n 1, 2, . At every 
crossing, if the ARP condition 16νb/ωr ≪ (W0/ωr)2 ⩽ 1 is ful-
filled, the atoms change their momentum by 2ℏ k, transfer-
ring one photon from one beam of the optical lattice to the 
other one. This momentum transfer causes a force which 
compensates for the external force in the laboratory frame. 
In an equivalent picture, the accelerated atomic matter wave 
decreases its de Broglie wavelength until, at the edges of the 
Brillouin zone, it becomes commensurate with the optical lat-
tice and is Bragg-reflected.

For larger cooperative coupling, NU0/κ, the ring cavity 
comes into play. Now, the matter wave may not only scat-
ter light between the optical lattice beams, but it also coop-
eratively scatters photons from the pumped cavity mode into 
the reverse mode α, which now exert influence on the atomic 
dynamics. If NU0/κ ≫ α0, the CARL mechanism dominates 
over the Bragg scattering. In this regime, the mechanism 
responsible for transferring momentum to the atoms is not the 
ARP across the Bragg resonance, but the backscattering of 
the pump light by a self-generated atomic density grating [3]. 
As a consequence, the population transfer between adjacent 
momentum states does not occur at the regular Bloch periods, 
but may vary in time.

Only for moderate cooperative coupling (NU0/κ ≈ α0), we 
find a parameter range where CARL and Bragg scattering 
cooperate to set up a synchronized regime with regular and sta-
ble Bloch oscillations. At some point, when the backscattering 

Figure 2. Time evolution of (a) the population of the momentum states ∣Cn∣2, (b) the average atomic momentum 〈p〉lab in the laboratory 
frame with N = 4·104 atoms, and (c) the average photon number ∣α∣2 in the regime dominated by Bloch dynamics. The parameters used to 
perform the simulations are: α0 = 20, νb = 0.035ωr, κ = 160ωr, δ = 0, and U0 = 0.04ωr.

−0.2
0

0.2
<

p>
la

b

0 2 4 6 8 10
0

20

ν
b
t

 |α
| 2

0

0.5

1

|C
n|

2

 

 

Bloch

b)

a)

c)

Laser Phys. Lett. 11 (2014) 126005



M Samoylova et al

4

of the pump light into the probe mode becomes stronger, the 
depth of the potential formed in the cavity by interference of 
the pump and the counterpropagating probe light may exceed 
the depth of the optical lattice generated by the external beams 
K1 and K2. In this regime, the CARL mechanism takes over 
and imposes its dynamics on the atoms [2, 3, 6], dominating 
the Bloch oscillations.

3. Simulations

Figures 2–4 illustrate the intricate dynamics in the regimes 
dominated by Bloch oscillations or by CARL dynamics, as 
well as an intermediate regime where both dynamics com-
pete. We choose the example of an ultracold cloud of 87Rb 
atoms interacting with the light fields via their D2-line at 
λ0  =  780  nm, for which the recoil frequency is ωr  =  (2π) 
3.75 kHz and the Bloch oscillation frequency, supposing that 
the accelerating force is gravity (i.e. a = g) is νb = 0.035ωr. We 
also assume κ = 160ωr, δ = 0, U0 = 0.04ωr, and W0 = 3.2ωr, 
which corresponds to ∣α0∣2  =  400 photons. The collective 
coupling strength is controlled by varying the atom number 
between N = 4·104 and 12  ·  104. These parameters are per-
fectly realizable in state-of-the-art experiments.

Figure 2 represents a regime dominated by Bloch oscilla-
tion dynamics. Figure 2(a) shows a typical evolution of the 
momentum state populations ∣Cn∣2 as a function of scaled time 
νbt for the case that the dynamics is dominated by Bloch oscil-
lations. The population of each momentum state is accentuated 
by a different color in order to facilitate their visual distinc-
tion during the temporal evolution. As can be seen, all atoms 
initially prepared in a single momentum state participate in 
the dynamics. This is explained by the fact that throughout the 
evolution the momentum transfer between adjacent momen-
tum states remains fully efficient. As a consequence, the 
Bloch oscillations persist for long times, as seen in figure 2(b) 
showing the evolution of the average atomic momentum in 
the laboratory frame, 〈p〉lab = 〈p〉 + νbt with 〈p〉 = ∑nn∣Cn∣2. 
After a transient of approximately three Bloch oscillations the 
population is efficiently restored into the first Brillouin zone 

and the feedback provided by the cavity field onto the atomic 
motion tends to assist the adiabatic rapid passages between 
momentum states helping to complete the momentum transfer 
each Bloch period τb.

Moreover, the atomic Bloch oscillation dynamics is 
accompanied by a radiation field reaching, after a transient, 
a stationary regime characterized by periodic bursts of light 
emitted into the probe mode at each oscillation. The intracav-
ity photon number evolution ∣α∣2 in the probe mode is dem-
onstrated in figure  2(c). The average photon number ∣α∣2 ≃ 
20 corresponds, for the chosen value of κ, to a photon flux 
of ∼18 400 s−1 outside the cavity behind the output coupler, 
i.e. ∼ 140 photons/Bloch oscillation. Hence, the light bursts 
appear to be perfectly detectable via a photon counter and to 
provide a reliable and stable monitor of the atomic motion.

In the intermediate regime, when both dynamics are pre-
sent, only a fraction of the atoms perform Bloch oscilla-
tions, whereas the remaining atoms fail to synchronize. This 
is illustrated in figure 3(a). The competition between CARL 
dynamics and Bloch oscillations leads to irregular oscilla-
tion frequencies, and the dispersion of the atoms over dif-
ferent momentum states induces drifts of the average atomic 
momentum (see figure  3(b)). Moreover, the bursts of light 
in the radiation field shown in figure 3(c) are no longer peri-
odic and cannot be used as a reliable signature of the atomic 
dynamics.

In contrast to the previous cases, in the regime domi-
nated by CARL dynamics, the atoms quickly jump from one 
momentum state to the next one in a superradiant fashion. This 
can be seen in figure  4(a). The backscattering of the pump 
light and the amplification of a coherent wave in the probe 
mode of the ring cavity is accompanied by an increasing drift 
of the average atomic momentum (see figure 4(b)). At longer 
times the increase slows down because the Doppler shift asso-
ciated with the atomic motion drives the scattered light out of 
the cavity resonance, and as a result the CARL force dimin-
ishes. In this regime, the radiation field experiences multiple 
light bursts per Bloch oscillation period (see figure 4(c)) and, 
consequently, its dynamics cannot be considered as a reliable 
monitor of the atomic motion.

Figure 3. Dynamics of (a) the momentum state populations, (b) the average atomic momentum in the laboratory frame, and (c) the average 
photon number as a function of normalized time νbt in a regime, dominated by CARL dynamics. N = 12·104 and the other parameters are 
the same as in figure 2.
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The transition between the regimes is illustrated by figure 5,  
which shows the time evolution of the phase ϕ of the probe 
field α α α= −∼

0 in the regime of pure Bloch oscillations (blue), 
as well as in the intermediate regime (purple) and the regime 
dominated by CARL (red). Being absolutely unstable in the 
case of CARL dynamics, the phase fluctuations gradually 
decrease in the intermediate regime, when the Bloch dynamics 
becomes stronger. And they totally disappear when the Bloch 
oscillations dominate. Then the feedback provided by the cav-
ity stabilizes the Bloch oscillations, and after some transient 
rapid oscillations (which could be reduced by an adiabatic 
switch-on of the lattice potential), the phase remains locked 
to π/2 with only slight perturbations at each Bloch oscillation.

4. Conclusion

The atom-field coupling in a uni-directionally pumped ring cav-
ity provides a feedback mechanism of the atomic motion onto 
the amplitude and phase of the counterpropagating light field. 
This feedback mechanism, named CARL, can be exploited to 
stabilize and monitor Bloch oscillations of ultracold atoms in 
an optical lattice. Whether CARL and the Bloch oscillation 

dynamics perturb each other or cooperate and synchronize, 
depends on the collective atom-field coupling strength. We 
observed, for a certain range of parameters, a mode-locking 
of the atomic motion to the Bloch oscillation frequency, which 
leads to regular and stable Bloch oscillations. The fact that 
the atoms are not accelerated, but stay within the first Bloch 
band, is at the origin of several important practical advantages. 
Firstly, long-term drifts of the atomic center-of-mass motion 
are prevented. Moreover, robust light bursts emitted into the 
probe mode provide a non-destructive monitor of the Bloch 
oscillations over long times. Note that, if the pump laser is 
tuned close to the atomic resonance, the intracavity light field 
Ωp can exert a non-negligible constant radiation pressure on 
the atoms, which may alter the measure of the atomic accelera-
tion and, hence, the frequency of the Bloch oscillations. It has, 
however, no impact on the mode-locking dynamics.
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